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The first structurally characterized dizinc(II) complex with
bridging �2-phosphate diesters, in this case dibenzyl phos-
phate, and internal N–H� � �O–P H-bonding are reported.

The design of efficient host molecules for phosphate anion
guests has been attracting much current attention because of
the many important biological roles of phosphates and poten-
tial applications in biotechnology.1 Organic receptors equipped
with acidic hydrogens have been proved to be efficient hosts of
phosphate anions due to strong complementary H-bonding in
non-aqueous solutions.2 H-bonding has also been used to acti-
vate phosphate esters toward nucleophilic attack.3 These H-
bonds, however, are typically disrupted in water and as a result
it is generally difficult to achieve strong binding/activation of
phosphates with organic hosts.4 In Nature, many of the chem-
ical transformations of phosphates, including hydrolysis, are
performed by metalloenzymes and they are facilitated by the
cooperative action of two or more metal ions, Zn2� being one
of the most frequently employed.5 Typically, these metal ions
are 3–5 Å apart. In addition to the metals, the involvement of
XH groups (X = N, O) of arginine, lysine, histidine, tyrosine
and/or serine residues in H-bonding interactions to phosphate
groups is a ubiquitous feature of the active sites of these metal-
loenzymes.5,6 Many of these interactions/amino acid residues
are thought to be functionally important, but the mechanistic
details regarding their precise roles remain unclear.

Recently, it has been shown that binding of a phosphate
ester to two Cu2� ions with simultaneous hydrogen bonding to
one ammonium group can result in a remarkable acceleration
(4 × 107-fold) of the hydrolysis of bis(p-nitrophenyl) phosphate
(BNPP).7 The excellent reactivity of this dicopper() complex
was explained in terms of the additional electrostatic activation
provided by the N–H � � � O–P H-bonding. Also very recently,
metal co-ordination and internal N–H � � � O–P H-bonding
have resulted in improved phosphate binding to a monometallic
Co() complex.8 Thus, the co-operation of metal ions and H-
bonding groups appears to be a promising novel strategy to
improve both the binding of phosphates and the efficacy of
their chemical transformations by bio-inspired metallohosts in
water. These metal complexes can also provide new insights into
the enzyme chemistry.

Recent work has shown that the ligand unit (6-amino-2-pyri-
dylmethyl)amine ideally positions an N–H for internal H-bond-
ing to other metal-bound ligands.9,10 Thus, the tripodal ligand
N,N-bis-(2-pyridylmethyl)-N-(6-amino-2-pyridylmethyl)amine
(bpapa) seemed suitable to pursue the biomimetic cooperation
of zinc() ions and N–H groups as a way to improve binding
and activation of phosphate anions at artificial receptor sites.
In addition, zinc() complexes of the parent ligand without the
H-bonding group, tris-(2-pyridylmethyl)amine (tpa), were
known to bind phosphates.11

† Electronic supplementary information (ESI) available: Experimental
and X-ray crystallography details; Fig. S1–4: changes of the 31P NMR
chemical shift of DBP. See http://www.rsc.org/suppdata/dt/b3/
b312281f/

The dizinc() complex [(bpapa)Zn(µ-η2-DBP)2Zn(bpa-
pa)](PF6)2 1 (DBP = dibenzyl phosphate) was assembled by
reaction of equimolar amounts of [Zn(NCCH3)4](PF6)2, DBP
and bpapa 9 in MeCN. Colourless crystals of 1�0.3CH3OH suit-
able for X-ray diffraction studies 12 were grown by slow evapor-
ation of a CH3OH solution. Each of the symmetry-related
zinc() centres is six-coordinate, being ligated by the three pyr-
idyl and single aliphatic nitrogens of bpapa and two oxygens of
DBP� (Fig. 1). The geometry about each of the zinc() centres is
best described as distorted octahedral. The Zn � � � Zn distance
of 4.91 Å is shorter than in flexible dizinc() complexes bridged
by a single phosphate.11,13 The Zn � � � Zn distance in 1 is also
somewhat shorter than in dizinc() complexes bridged by two
phosphates and a flexible dinucleating ligand framework such
as [30]aneN6O4.

14 A key feature present in the structure of 1,
which is absent in any of the previously structurally character-
ized dinuclear metal complexes bridged by phosphate esters is
the short intramolecular N–H � � � O–P H-bond (Fig. 1).
Recently, it was suggested that H-bonding stabilizes metal-
bound phosphates.8 It may also orient the zinc()-bound phos-
phate diester. Thus, whereas the P(1)–O(4P)–Zn angle of
136.57(12)� is similar (±1�) to the corresponding angles in other
crystallographically characterized dizinc() phosphate-bridged
complexes,11,13,14 the P(1)–O(3P)–Zn angle has expanded to
143.60(13)�, presumably to optimize the N(7)–H(7A) � � � O(3P)
H-bond.

Binding of DBP� to {(bpapa)Zn}2� and {(tpa)Zn}2� moi-
eties was investigated by 31P{1H} NMR titration experiments of
5 mM DBP in D2O at pD 7.4 with varying amounts of [(bpapa)-

Fig. 1 A thermal ellipsoid plot of [(bpapa)Zn(µ-η2-DBP)2-
Zn(bpapa)]2� drawn with 30% probability ellipsoids. Hydrogen atoms
except those of N(7) are omitted for clarity. Selected bond lengths (Å):
Zn–N(1) 2.225(2), Zn–N(2) 2.203(2), Zn–N(12) 2.176(2), Zn–N(22)
2.193(2), Zn–O(3P) 2.0255(19), Zn–O(4P) 2.0711(19). Selected
hydrogen bonding interactions: N(7) � � � O(3P) 2.9321(3) Å,
H(7A) � � � O(3P) 2.00 Å, N(7)–H(7A) � � � O(3P) 151� (for the N(7)–
H(7A) extended to 1.01 Å).D
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Zn(S)]2� and [(tpa)Zn(S)]2� (50 mM in S = CD3CN). The addi-
tion of increasing amounts of these zinc() complexes to solu-
tions of DBP causes a progressive upfield shift of the 31P signal
relative to free DBP (Fig. 2). The upfield shift of the DBP signal
for solutions containing less than 2 equiv. of Zn2� relative to
DBP� is smaller than for solutions containing more than 2
equiv., and could be due to the formation of DBP:(ZnL)n com-
plexes (n > 1). The rather large upfield shifts observed for the
31P signal of the zinc-bound DBP, ca. 1.5–2.0 ppm, is also con-
sistent with the occurrence of bridging coordination modes in
solution. The fact that the upfield shifts can be more prominent
by as much as 0.5 ppm, when {(bpapa)Zn}2� is added, indicates
that this has higher binding affinity for DBP� than {(tpa)-
Zn}2�.15,16 Recently, it was reported that the binding of di-
anionic phosphate ester NPP2� to [((2-guanidyl)ether-cyclen)-
Zn(OH2)]

2� was ca. 10 times stronger than to [(cyclen)-
Zn(OH2)]

2� due to phosphate-guanidium double H-bonding.17

Interestingly, the maximum upfield shift observed for the 31P
signal of NPP2� bound to {((2-guanidyl)ether-cyclen)Zn}2�

relative to bound to {(cyclen)Zn}2� was also 0.5 ppm.
There is much current interest in metal complexes with

internal H-bonding. In particular, recent elegant studies have
highlighted the importance of incorporating such interactions
in synthetic models of metalloenzymes.7,8,10,18 Here, we have
reported the X-ray crystal structure of a dizinc() complex with
the unique feature of internal N–H � � � O–P H-bonding to
bridging η2-dibenzyl phosphates. We expect the use of ligands
with internal H-bond donors such as bpapa will provide syn-
thetic hydrolases that resemble more faithfully the micro-
environments and chemistry of phosphates in the active sites of
nucleases, in which case they could allow the elucidation of the
cooperative mechanisms between the metal(s) and the second
co-ordination sphere. H-bonding features in synthetic hydro-
lases could also improve the catalytic properties of metal
complexes by further activating ground state molecules and
preferentially stabilizing the transition states of reactions.
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